国产内射老熟女AAAA,精品视频在线观看在线,av日韩在线一区二区三区,日本a一区二区三区在线

撥號18861759551

你的位置:首頁 > 技術文章 > Advantages of Fresnel Lenses

技術文章

Advantages of Fresnel Lenses

技術文章

Advantages of Fresnel Lenses

Fresnel lenses consist of a series of concentric grooves etched into plastic. Their thin, lightweight construction, availability in small as well as large sizes, and excellent light gathering ability make them useful in a variety of applications.Fresnel lenses are most often used in light gathering applications, such as condenser systems or emitter/detector setups. They can also be used as magnifiers or projection lenses in illumination systems, and image formulation.

A Fresnel (pronounced fray-NEL) lens replaces the curved surface of a conventional optical lens with a series of concentric grooves. These contours act as individual refracting surfaces, bending parallel light rays to a common focal length (Figure 1). As a result, a Fresnel lens, while physically narrow in profile, is capable of focusing light similar to a conventional optical lens but has several advantages over its thicker counterpart.

 

THE THEORY OF FRESNEL LENSES

The driving principle behind the conception of a Fresnel lens is that the direction of propagation of light does not change within a medium (unless scattered). Instead, light rays are only deviated at the surfaces of a medium. As a result, the bulk of the material in the center of a lens serves only to increase the amount of weight and absorption within the system.

 

To take advantage of this physical property, 18th-century physicists began experimenting with the creation of what is known today as a Fresnel lens. At that time, grooves were cut into a piece of glass in order to create annular rings of a curved profile. This curved profile, when extruded, formed a conventional, curved lens – either spherical or aspherical (Figure 2). Due to this similar optical property compared to a conventional optical lens, a Fresnel lens can offer slightly better focusing performance, depending upon the application. In addition, high groove density allows higher quality images, while low groove density yields better efficiency (as needed in light gathering applications). However, it is important to note that when high precision imaging is required, conventional singlet, doublet, or aspheric optical lenses are still best.

MANUFACTURING FRESNEL LENSES

The first Fresnel lenses were made by tediously grinding and polishing glass by hand. Eventually, molten glass was poured into molds, but it was only with the development of optical-quality plastics and injection-molding technology in the 20th-century that the use of Fresnel lenses in many industrial and commercial applications became practical.

 

Fresnel lenses can be manufactured from a variety of substrates. They are manufactured from acrylic to polycarbonate to vinyl, depending on the desired wavelength of operation. Acrylic is the most common substrate due to its high transmittance in the visible and ultraviolet (UV) regions, but polycarbonate is the substrate of choice in harsh environments due to its resistance to impact and high temperature.

 

APPLICATION EXAMPLES

While French physicist Augustin-Jean Fresnel (1788 - 1827) was not the first to conceptualize a Fresnel lens, he was able to popularize it by integrating it into lighthouses. Since then, Fresnel lenses have been utilized in a variety of applications, from light collimation and light collection to magnification.

 

Light Collimation

 

A Fresnel lens can easily collimate a point source by placing it one focal length away from the source. In a finite-conjugate system, the grooved side of the Fresnel lens should face the longer conjugate (Figures 3 - 4) because this produces the best performance.

Figure 3: Light Collimation of a Point Source with a Fresnel Lens

 

Light Collection

 

One of the most common applications for a Fresnel lens is the collection of solar light, which is considered very nearly parallel (an infinite-conjugate system). Using a Fresnel lens for light collection is ideal for concentrating light onto a photovoltaic cell or to heat a surface. For example, a Fresnel lens can be used for popular home maintenance such as heating a home or pool! In these cases, the overall surface area of the lens determines the amount of collected light.

Figure 4: Light Collimation of a Point Source with a Fresnel Lens

 

Magnification

 

Another common application for a Fresnel lens is magnification. It can be used as a magnifier or projection lens; however, due to the high level of distortion, this is not recommended. Also, the image quality does not compare to that of a higher-precision system given the amount of distortion.

 

While commonly found in solar applications, Fresnel lenses are ideal for any application requiring inexpensive, thin, lightweight positive lens elements. Fresnel lenses are not new technology, but their pervasiveness has increased with improvements in manufacturing techniques and materials. Fresnel lenses are truly unique optical lenses which make them a great tool for a range of interesting and fun optical designs.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
久久久久久国产A免费观看| 人妻在线系列一区二区三| 免费国产香蕉视频在线观看| 啊啊好想被大鸡巴操视频| 日韩精品无码一区二区三区不卡| 女人182毛片a级毛片| 日韩欧美视频在线观看不卡| 久久久久久国产A免费观看| 欧洲老妇人操大逼| 欧美 日韩 激情 在线| 天堂无码不卡av| 大鸡巴干小逼视频| 久久精品欧美日韩精品不卡| 国产精品一区二区三区色噜噜| 尤物网三级在线观看| 一色道久久88加勒比一| 亚洲一区二区三区四区国产| 日本成人精品一区二区三区| 顶的速度越来越快越| 国产精品久久大屁股白浆| 国产一国产一级毛片无码视频百度| 一级美女插逼百度| 欧美丰满大屁股女人的逼被操视频| 啊啊啊啊大鸡巴操我视频| 骚女性爱视频在线看| 大香蕉中码手机在线视频| 国内揄拍国内精品| 妺妺坐在我腿上下面好湿| 在线12萝自慰喷水| 欧美精品性做久久久久久| 日韩美女叉B视频| 男女操逼视频嫩嫩| 无码人妻丰满熟妇区精品| 曰木高清免费一本| 色噜噜噜噜一区二区三区| 综合欧美日韩一区二区三区| 国产蜜月精品高清一区二区三区| 中国美女操逼的视频| 欧美大胆a级视频 一本| 日本免费精品一区二区三区四区| 韩国精品视频一区二区在线观看|